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Appendix 1 
 

CALCULATION OF CONFIDENCE INTERVALS 
 
 

1. INTRODUCTION 
 
The use of Noise-Power-Distance (NPD) curves requires that confidence intervals be determined using 

a more general formulation than is used for a cluster of data points.  For this more general case confidence 
intervals may need to be calculated about a regression line for: 

 
(a) flight test data, 
 
(b) a combination of flight test and static test data, 
 
(c) analytical results, 
 
or a combination thereof. 
 
The latter two are of particular significance for noise certifications of an aircraft model range and 

require special care when pooling the different sources of sampling variability. 
 
Sections 2 to 5 provide an insight into the theory of confidence interval evaluation.  The application of 

this theory and some worked examples are presented in Section 6.  A suggested bibliography is given in 
Section 7 for those wishing to gain a greater understanding. 

 
 
2. CONFIDENCE INTERVAL FOR THE MEAN OF FLIGHT TEST DATA 
 
2.1 Confidence interval for the sample estimate of the mean of clustered measurements 
 
If n measurements of effective perceived noise levels  y y yn1 2, ,....,   are obtained under 

approximately the same conditions and it can be assumed that they constitute a random sample from a normal 
population with true population mean,  µ  , and true standard deviation,  σ  , then the following statistics can 
be derived:- 
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From these and the Student's t-distribution, the confidence interval,  CI   , for the estimate of the 

mean,  y   , can be determined, as: 

 ( )CI y t
s

n
= ±

−1
2
α ζ,

 

where  ( )t
1

2
− α ζ,

  denotes the  ( )1 2− α   percentile of the single-sided Student's t-test with  ζ  degrees 

of  freedom ( for a clustered data set  ζ = −n 1 ) and where α  is defined such that  ( )100 1 − α   percent is 

the  desired confidence level for the confidence interval.  That is it denotes the probability with which the 
interval  will contain the unknown mean,  µ  .  For noise certification purposes 90% confidence intervals are 
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generally  desired and, thus  t. ,95 ζ    is used.  See Table 1-2 situated at the end of this appendix for a listing of 

values of  t. ,95 ζ    for different values of  ζ  . 

 
2.2 Confidence interval for mean Line obtained by regression 
 
If n measurements of effective perceived noise levels  y y yn1 2, ,....,   are obtained under significantly 

varying values of engine-related parameter  x x xn1 2, ,....,   respectively, then a polynomial can be fitted to the 
data by the method of least squares.  The following polynomial regression model for the mean effective 
perceived noise level,  µ  , is assumed to apply: 

 

 µ = + + + +B B x B x B xk
k

0 1 2
2 .....  

 
and the estimate of the mean line through the data of the effective perceived noise level is given by: 
 

 y b b x b x b xk
k= + + + +0 1 2

2 .....  
 

Each regression coefficient  Bi   is estimated by  bi   from the sample data using the method of least  
squares in a process summarised below. 

 
Every observation  ( x yi i, )  satisfies the equations 
 

 y B B x B x B xi i i k i
k

i= + + + + +0 1 2
2 ..... ε  

      = + + + + +b b x b x b x ei i k i
k

i0 1 2
2 .....  

 
where  εi   and  ei   are the random error and residual associated with the effective perceived noise  

level.  The random error,  εi   , is assumed to be a random sample from a normal population with mean zero 

and standard deviation  σ  .  The residual,  ei   , is the difference between the measured value and the estimate  
of the value using the estimates of the regression coefficients and  xi  .  Its root mean square value,  s  , is the 

sample estimate for  σ  .  These equations are often referred to as the normal equations. 
 
The  n  data points of measurements  ( x yi i, )  are processed as follows: 
 
Each elemental vector,  x i   , and its transpose  ′x

i
  , are formed such that 

 ( )x x x xi i i i
k= 1 2 . .   , a row vector, 
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  , a column vector. 

 
A matrix  X  is formed from all the elemental vectors  x i ni  for = 1,....,   .  ′X   is the transpose of  

X . 
 

We define a matrix  A  such that  A X X= ′
  and a matrix A−1 to be the inverse of A. 

 
Also y y y yn= ( . . . )1 2  
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and b b b bk= ( . . . )0 1  
 
with  b   determined as the solution of the normal equations: 

 y X b=  

and  ′ = ′ =X y X X b Ab   , 

to give b A X y= ′−1
  . 

 
The 90% confidence interval,  CI90   , for the mean value of the effective perceived noise level  

estimated with the associated value of the engine-related parameter, x0  , is then defined as 

 ( ) ( )CI y x t s v x90 0 95 0= ± . ,ζ     , where ( )v x x A x0 0
1

0= ′−
  . 

Thus ( )CI y x t s x A x90 0 95 0
1

0= ± ′−
. ,ζ    

where ( )x x x x k
0 0 0

2
01= . . , 

 
 ′x 0   is the transpose of  x0 , 

 

 y x( )0   is the estimate of the mean value of the effective perceived noise level at the  
associated value of the engine related parameter,   

 
 t. ,95 ζ  is obtained for ζ  degrees of freedom.  For the general case of a multiple regression  

analysis involving K  independent variables (i.e. K +1 coefficients) ζ  is defined as ζ = − −n K 1 (for the  

specific case of a polynomial regression analysis, for which k  is the order of curve fit, we have k  variables  
independent of the dependent variable, and so ζ = − −n k 1), 

 

and 

( )( )
s

y y x

n K

i i
i

i n

=
−

− −
=

=

∑
2

1

1
  , the estimate of σ , the true standard deviation. 

 
 
3. CONFIDENCE INTERVAL FOR STATIC TEST DERIVED NPD CURVES 
 
When static test data is used in family certifications, NPD curves are formed by the linear 

combination of baseline flight regressions, baseline projected static regressions, and derivative projected static 
regressions in the form: 

 
 EPNL EPNL EPNL EPNLDF BF BS DS= − +  
 
or using the notation adopted above: 
 

 y x y x y x y xDF BF BS DS( ) ( ) ( ) ( )0 0 0 0= − +  

 
where subscript  DF denotes derivative flight, BF denotes baseline flight, BS denotes baseline static, 

and DS denotes derivative static. 
 
Confidence intervals for the derivative flight NPD curves are obtained by pooling the three data sets 

(each with their own polynomial regression).  The confidence interval for the mean derived effective perceived 
noise level at engine-related parameter x0 , i.e., for  µDF x( )0  , is given by:- 

 

 ( )CI x y x t v xDF DF90 0 0 0= ± ′( ) ( )  
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where  ( ) ( ) ( )v x s v x s v x s v xDF BF BF BS BS DS DS( ) ( ) ( ) ( )0 0

2

0

2

0

2= + +  

 
 with s s s v x v x v xBF BS DS BF BS DS,  ,  ,  ,   and ( ) ( ) ( )0 0 0 computed as  explained in Section 

2.2  for the respective data sets indicated by the subscripts BF, BS, and DS, and 
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( ) ( ) ( )
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+ +

+ +
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 where t t tBF BS DS,   and  are the t. ,95 ζ   values each evaluated with the respective degrees of  

freedom ζ ζ ζBF BS DS,   and   as they arise in the corresponding regressions. 
 
 
4. CONFIDENCE INTERVAL FOR ANALYTICALLY DERIVED NPD CURVES 
 
Analysis may be used to determine the effect of changes in noise source components on certificated 

levels.  This is accomplished by analytically determining the effect of hardware change on the noise component 
it generates.  The resultant delta is applied to the original configuration and new noise levels are computed.  
The changes may occur on the baseline configuration or on subsequent derivative configurations.  The 

confidence intervals for this case are computed using the appropriate method from above.  If  $∆   represents the 
analytically determined change and if it is assumed that it may deviate from the true unknown  ∆   by some 
random amount d , i.e. 

 

 $∆ ∆= + d   , 
 

where d  is assumed to be normally distributed with mean zero and known variance  τ2 , 
 
then the confidence interval for  µ( )x0 + ∆ is given by 
 

 ( )y x t v x( ) $ ( )0 0+ ± ′ ′∆  

 

where ′ = +v x v x( ) ( )0 0
2 2τ  and ′t  is as above without change. 

 
 
5. ADEQUACY OF THE MODEL 
 
5.1  Choice of engine-related parameter 

 
Every effort should be made to determine the most appropriate engine-related parameter x, which may 

be a combination of various simpler parameters. 
 
5.2  Choice of regression model 

 
It is not recommended in any case that polynomials of greater complexity than a simple quadratic be  

used for certification purposes, unless there is a clear basis for such a model. 
 
Standard texts on multiple regression should be consulted and the data available should be examined  

to show the adequacy of the model chosen. 
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6. WORKED EXAMPLE OF THE DETERMINATION OF 90% CONFIDENCE INTERVALS FROM THE 

POOLING OF THREE DATA SETS 
 
This section presents an example of the derivation of the 90% confidence intervals arising from the   

pooling of three data sets. Worked examples and guidance material are presented for the calculation of  
confidence intervals for a clustered data set and for first order (ie. straight line) and second order (ie.  
quadratic) regression curves. In addition it is shown how the confidence interval shall be established for the  
pooling together of several data sets. 

 
Consider the theoretical evaluation of the certification noise levels for an aircraft retro-fitted with  

silenced engines.  The approach noise level for the datum aircraft was derived from a clustered data set of  
noise levels measured at nominally reference conditions, to which were added source noise corrections derived  
from a quadratic least squares curve fit through a series of data points made at different engine thrusts.  In  
order to evaluate the noise levels for the aircraft fitted with acoustically treated engines a further source noise  
curve (assumed to be a straight least squares regression line) was established from a series of measurements of  
the silenced aircraft.  Each of the three data bases is assumed to be made up of data unique to each base. 

 
The clustered data set consists of six EPNL levels for the nominal datum hardwall condition.  These 

levels have been derived from measurements which have been fully corrected to the hardwall approach 
reference condition. 

 
The two curves which determine the acoustic changes are the regression curves (in the example given  

both a quadratic and straight line least squares curve fit) for the plots of EPNL against normalised thrust for  
the hardwall and silenced conditions.  These are presented in figure below.  The dotted lines plotted about  
each line represent the boundaries of 90% confidence. 
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Figure 1.1 

 
Each of the two curves is made up of from the full set of data points obtained for each condition 

during a series of back to back tests.  The least squares fits therefore have associated with them all the 
uncertainties contained within each data set.  It is considered that the number of data points in each of the  
three sets is large enough to constitute a statistical sample. 

 
6.1  Confidence interval for a clustered data set 

 
The confidence interval of the clustered data set is defined as follows: 
 

Let EPNLi  be the individual values of EPNL 
n  = number of data points 
t  = Student's t-distribution for (n-1) degrees of freedom (the number of degrees of 
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      freedom associated with a clustered data set). 
 

Then the Confidence Interval CI EPNL t
s

n
= ±  

where s , the estimate of the standard deviation, is defined as  
 

 

( )
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i
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−

−
=
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1
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i

i

i n

= =

=

∑
1 . 

Let us suppose that our clustered set of EPNL values consists of the following: 
 

Run Number EPNL  
1 95.8  
2 94.8  
3 95.7  
4 95.1  
5 95.6  
6 95.3  

 
Then number of data points  (n)   =  6 ,  
 
 degrees of freedom  (n −1)  =  5, 
 
 Student's t-distribution for 5 degrees of freedom  =  2.015  (See Table 1-2), 

 EPNL
EPNL

n

i
i

i n

= ==

=

∑
1 95 38. , 
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i
i
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−

−
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1
0 3869. , 

 
and Confidence Interval  

 CI EPNL t
s

n
= ± = ± = ±95 38 2 015

0 3869

6
95 38 0 3183. .

.
. .  

 
 
6.2 Confidence interval for a first order regression curve 

 
Let us suppose that the regression curve for one of the source noise data sets (for the silenced case)  

can best be represented by a least squares straight line fit  ie. a first order polynomial.  
 
The equation for this regression line is of the general form: 

 
 Y a bX= +  
 
where Y  represents the dependent variable EPNL , 
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and X  represents the independent variable normalised thrust 
FN

δ   ,(in this case). 

 
Although for higher order polynomial least squares curves a regression line's coefficients (ie. the  

solutions to the "normal equations") are best established through computer matrix solutions, the two  
coefficients for a straight line fit, a  and b , can be determined from the following two simple formulae for the  
measured values of  X   and  Y  ,  X i   and  Yi  : 

 b
Covariance

Variance

S

S
xy

x

= =
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The 90% confidence interval about this regression line for  X x= 0   is then defined by: 

 CI Y ts x A x90 0
1

0= ± ′−
 

 

where t = Student's t-distribution for 90% confidence corresponding to  ( )n k− − 1   degrees of  

freedom (where  k   is the order of the polynomial regression line and n is the number of data points), 

( )x x0 01=   and  x
x0

0

1′ =






  , 

A−1
 is the inverse of A A X X where = ′

 , 

with  X   and  X ′
 defined as in paragraph 2.2 from the elemental vectors formed from the measured  

values of independent variable  X i  , 
 

( )
s

Y

n k

i
i

i n

=
− −

=

=

∑ ∆ 2

1

1
 

 

where ( )∆ Y i  = the difference between the measured value of  Yi   at its associated value of   X i  ,and 

the value of  Y  derived from the least squares fit straight line for X X i=   ,and  n   and  k   are  defined as 
above. 

 
Let us suppose that our data set consists of the following set of six EPNL values together with their  

associated values of engine related parameter (Note that it would be usual to have more than six data points  
making up a source noise curve but in order to limit the size of the matrices in this example their number has  
been restricted): 

 



Environmental Technical Manual on the use of           CAEP Working Groups 
Procedures in the Noise Certification of Aircraft                Approved Revision 7 

Appendix 1 
82 

                 Run 
Number 

FN
δ  

              
EPNL  

1 1395 92.3  
2 1505 92.9  
3 1655 93.2  
4 1730 92.9  
5 1810 93.4  
6 1850 93.2  

 
Table 1-1 

 
By plotting this data (See Figure 1.1) it can be seen by examination that a linear relationship between  

EPNL (the dependent variable  Y ) and 
FN

δ  (the independent variable  X ) is suggested with the following  

general form: 
 
 Y a bX= +  
 
The coefficients  a   and  b   of the linear equation are defined as above and may be calculated as  

follows: 
 

X  Y  XY  X 2   
1395 92.3 128759 1946025  
1505 92.9 139815 2265025  
1655 93.2 154246 2739025  
1730 92.9 160717 2992900  
1810 93.4 169054 3276100  
1850 93.2 172420 3422500  

X∑  Y∑  XY∑  X 2∑   

9945 557.9 925010 16641575  
 

 b
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The 90% confidence interval about this regression line which is defined as: 

 CI Y ts x A x90 0
1

0= ± ′−
 

 
is calculated as follows. 
 
From the single set of measured independent variables tabulated in Table 1-1 let us form the matrix,   

X   , from the elemental row vectors such that: 

 X =

























1 1395

1 1505

1 1655

1 1730

1 1810

1 1850

  , 

 

and  X ′
  , the transpose of  X   , where 

 

 X ′ =








1 1 1 1 1 1

1395 1505 1655 1730 1810 1850
  . 

 

We now form the matrix  A  , defined such that  A X X= ′
  , and so 

 

 A =








6 9945

9945 16641575
  and its inverse  A−1

  such that 

 

 A− =
−

− −






1

17 5836 0 01051

0 01051 6 3396 6

. .

. .

 

 E
  . 

 
NB. The manipulation of matrices, their multiplication and inversion, are best performed by 

computers  via standard routines.  Such routines are possible using standard functions contained within many 
commonly  used spreadsheets. 

 
Suppose for example we now wish to find the 90% confidence interval about the regression line for a  

value of  
FN

δ   (i.e. x0)  of 1600.  We form the row vector  x0   such that: 

 ( )x0 1 1600=   and its transpose , a column vector x0

1

1600
′ =







   . 

From our calculation of  A−1
  we have: 

 

 ( )x A0
1 1 1600

17 5836 0 01051

0 01051 6 3396 6
− =

−
− −







 

E

. .

. .
 

 

              ( )= − −0 7709 36453 4. . E  
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and so ( )x A x0
1

0 0 7709 36453 4
1

1600
− ′ = − −







. . E   

 
      = 0 1876.  . 
 
Our equation for confidence interval also requires that we evaluate the value of standard deviation for  

the measured data set. From Table 1-1 and our regression equation for the least squares best fit straight line  

(from which we calculate the predicted value of EPNL at each of the 6 measured values of  
FN

δ  ) we proceed  

as follows: 
 

Run Number FN
δ  

EPNL 
(Measured) 

EPNL 
(Predicted) 

( )∆ EPNL
2

  

1 1395 92.3 92.50 0.03979  
2 1505 92.9 92.70 0.03911  
3 1655 93.2 92.98 0.04896  
4 1730 92.9 93.12 0.04708  
5 1810 93.4 93.26 0.01838  
6 1850 93.2 93.34 0.01909  

 

 

( )
s

y

n k

i
i

i n

=
− −

=
− −

==

=

∑ ∆ 
2

1

1

0 21241

6 1 1
0 2304

.
.   for  n = 6   and  k = 1. 

 

and so taking the value of Student's t from Table 1-2 for  ( )n k− − 1   degrees of freedom (i.e. 4) to 

be  2.132, we have the confidence interval about the regression line at 
FN

δ = 1600 defined as follows: 

 

( )( )CI s A x90
1

0 92 98 2132 0 2304 01876 92 98 0 2128= EPNL t x   0± ′ = ± = ±− . . . . . .  

 
In order to establish the lines of 90% confidence intervals about a regression line the values of  CI90    

for a range of values of independent variable(s) should be calculated, through which a line can be drawn. 
These  lines are shown as the dotted lines on Figure 1.1 

 
6.3 Confidence interval for a second order regression curve  

 
The confidence intervals about a second order regression curve are derived in a similar manner to  

those for a straight line detailed in Section 6.1.  It is not felt that a detailed example of their calculation would  
be appropriate.  However the following points should be borne in mind. 

 
The coefficients of the least squares regression quadratic line are best determined via computer matrix  

solutions. Regression analysis functions are a common feature of many proprietary software packages. 
 

The matrices x x X0 0,  ,  ′
  and  X ′

  formed during the computation of the confidence interval  

according to the formula: 

 CI Y t s x A x90 0
1

0= ± ′−  

 
are formed from 1 x 3 and 3 x 1 row and column vectors respectively, made up from the values of independent  
variable  X   according to the following general form: 
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 ( )x x x= 1 2   and  x x

x

′ =

















1

2

 . 

 
The number of degrees of freedom associated with a multiple regression analysis involving K  

variables  independent of the dependent variable (ie. with ( )K +1  coefficients, including the constant term) is 

defined as  ( )n K− −1 .  For a second order regression curve we have two independent variables and so the 

number of  degrees of freedom is ( )n − 3 . 
 
6.4 Confidence interval for the pooled data set 
 
The confidence interval associated with the pooling of three data sets is defined as follows: 

 CI Y T Zi
i

i

= ± ′
=

=

∑ 2

1

3

 

where Z
CI

ti
i

i

= , with  CIi   = confidence interval for the i'th data set and  ti   = value of Student's  

t  for the i'th data set, 

and T
Z t

Z
i

i i
i

i

i
i
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=
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2

1
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The different stages in the calculation of the confidence interval at our reference thrust of  
FN

δ = 1600 for the pooling of our three data sets is summarised below: 

 
Description Function 

 
Datum Hardwall Silenced  

 
Reference Thrust 

FN
δ  

  
1600 

 
1600  

 
90% Confidence Interval 

about the mean 

 
CI90  

 
0.3183 

 
0.4817 

 
0.2128  

 
Number of data points 

 
n  

 
6 

 
23 

 
6  

 
Degree of curve fit 

 
k  

 
0 

 
2 

 
1  

 
Number of independent 

variables 

 
K  

 
0 

 
2 

 
1  

 
Number of degrees of 

freedom 

 
n K− −1 

 
5 

 
20 

 
4  

 
Student's t 

 
t  

 
2.015 

 
1.725 

 
2.132  

 
Z  

 
CI

t
90  

 
0.1580 

 
0.2792 

 
0.09981  

 

Z 2  
CI

t
90

2




  

 
2.4953E-2 

 
7.7979E-2 

 
9.9625E-3  

 

Z t2  
CI

t t90

2




  

 
5.0280E-2 

 
0.1345 

 
2.1240E-2  

 
Z 2∑  

   
0.1129 

   

 

( )Z t2∑  
   

0.2060 
  

 
T  

( )Z t
Z

2

2
∑

∑
 

  
1.8248 

  

 

Z 2∑  
   

0.3360 
  

 
CI  

 

T Z 2∑  
  

0.6131 
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Degrees of Freedom 

(ζ) 
 

t. ,95 ζ  

1 6.314 
2 2.920 
3 2.353 
4 2.132 
5 2.015 
6 1.943 
7 1.895 
8 1.860 
9 1.833 

10 1.812 
12 1.782 
14 1.761 
16 1.746 
18 1.734 
20 1.725 
24 1.711 
30 1.697 
60 1.671 

>60 1.645 
 

 
Values in the Student's t-distribution to give a probability of 0.95 that the population mean value,  µ  , 

is such that: 

µ ζ≤ +y t
s

n
. ,95  , and thus a probability of 90% that 

y t
s

n
y t

s

n
− ≤ ≤ +. , . ,95 95ζ ζµ   . 

 
 
 
 

Student's t-DISTRIBUTION (FOR 90% CONFIDENCE INTERVAL) 
FOR VARIOUS DEGREES OF FREEDOM 

 
 

TABLE 1-2 
 


